If y = 2^x, find dy/dx

Q: If y = 2^x, find dy/dx.

ANSWER: 

1) Take Logs of both sides of our equation y = 2^x 

So we get: log(y)=log(2^x)

2) Apply relevant log rule to rhs: Log rule: log(a^b) = b . log(a)

[nb: the dot between b and log(a) represents x / multiply / times] :) 

So we get: log(y) = x . log(2)

3) Differentiate both sides with respect to x. 

LHS: log(y) => (1/y)(dy/dx) [partial differentiation hence we multiply (1/y) by dy/dx]

RHS: x . log(2) => log(2) [log(2) is a constant so x dissapears]

So we get: (1/y)(dy/dx) = log(2)

4) We want to find dy/dx, which is on the LHS. To get this dy/dx on its own we can multiply both sides by y. 

So we get: dy/dx = y . log(2)

5) To finish this question we need to sub in for y and then we have an answer for dy/dx. 

Recall y=2^x (from our original question)

So we get: dy/dx = (2^x)(log(2)) => our final solution 

BM
Answered by Bav M. Maths tutor

67111 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 2x/[(x+1)(2x-4)


Prove algebraically that the sum of the squares of two consecutive multiples of 5 is not a multiple of 10.


A fair die has six faces numbered 1, 1, 1, 2, 2, and 3. The die is rolled twice and the number showing on the uppermost face is recorded. Find the probability that the sum of the two numbers is at least three.


Why can't you divide something by 0?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences