If y = 2^x, find dy/dx

Q: If y = 2^x, find dy/dx.

ANSWER: 

1) Take Logs of both sides of our equation y = 2^x 

So we get: log(y)=log(2^x)

2) Apply relevant log rule to rhs: Log rule: log(a^b) = b . log(a)

[nb: the dot between b and log(a) represents x / multiply / times] :) 

So we get: log(y) = x . log(2)

3) Differentiate both sides with respect to x. 

LHS: log(y) => (1/y)(dy/dx) [partial differentiation hence we multiply (1/y) by dy/dx]

RHS: x . log(2) => log(2) [log(2) is a constant so x dissapears]

So we get: (1/y)(dy/dx) = log(2)

4) We want to find dy/dx, which is on the LHS. To get this dy/dx on its own we can multiply both sides by y. 

So we get: dy/dx = y . log(2)

5) To finish this question we need to sub in for y and then we have an answer for dy/dx. 

Recall y=2^x (from our original question)

So we get: dy/dx = (2^x)(log(2)) => our final solution 

BM
Answered by Bav M. Maths tutor

68823 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is 7 to the power of 8? (


Statistics: Dave throws a ball at a bucket. The probability the ball goes into the bucket is 0.4. Dave throws the ball four times. What is the probability that he gets it in twice?


How do you find stationary points of an equation, eg. y=x^2+3x+2


Find the area under the curve of y=1/(3x-2)^0.5 between the limits x=1 and x=2 and the line y=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning