Solve algebraically: 6x + y = 16, 5x - 2y = 19

The first step to eliminate one of the unknowns, in this case x or y. This can be done by making the coefficient (the number before) of one of the unkowns the same number, or the negative of the same number, in each equation.In this example, we can multiply the first equation by 2 to get:12x + 2y = 32So 2 is now the coefficient of y in one equation and -2 is in the other.We can now eliminate y by adding the equations together:12x + 2y = 32 5x - 2y = 19  + 17x    = 51Now we can easily solve for x by dividing both sides of the equation by 17:x = 3Then to solve for y, all we have to do is substitute our value for x back into one of the original equations:6x + y = 16 6(3) + y = 16 18 + y = 16 y = -2(To check the answer, we can sub x and y back into the other equation: 5x - 2y = 5(3) - 2(-2) = 15 - (-4) = 19 which is correct!)

CR
Answered by Caitlin R. Maths tutor

5437 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If a train leaves for a 130 mile journey at 1.30pm, and travels at a constant speed of 50 miles per hour, at what time will it arrive?


x^2 - 10x + 21 = 0


Factorise fully 6x^2-14x


Steve wants to put a hedge along one side of his garden. He needs to buy 27 plants for the hedge. Each plant costs £5.54 Steve has £150 to spend on plants for the hedge. Does Steve have enough money to buy all the plants he needs?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning