A line L is parallel to y = 4x+5 and passes through the point (-1,6). Find the equation of the line L in the form y = ax+b.

If line L is parallel to line A it will have the same gradient; in this case, the letter a in the equation y=ax+b represents the gradient. Therefore line L will be of the form y=4x+b. To find the value of b, we know that it passes through the co-ordinates (-1, 6) so we must insert these into our new equation. Doing so gives us: 6=4(-1)+b. Once we expand the brackets this becomes: 6=-4+b. In order to get the value b by itself on the right-hand side of the equation, we must add 4 to both sides which gives us: 10=b. Now we have the value of b, we can insert this into the basic equation we had earlier which was: y=4x+b. So the equation of line L must be: y=4x+10.

OK
Answered by Olivia K. Maths tutor

5218 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent of the curve y = (8x)/(x-8) at the point (0,0)


State the trigonometric identities for sin2x, cos2x and tan2x


A curve is described by the equation (x^2)+4xy+(y^2)+27=0. The tangent to the point P, which lies on the curve, is parallel to the x-axis. Given the x-co-ordinate of P is negative, find the co-ordinates of P.


How do you differentiate a function?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences