Solve the following simultaneous equations: 2a-5b=11, 3a+2b=7

Let 2a-5b=11 be Equation 1 and 3a+2b=7 be Equation 2. To find a and b, we first need to eliminate one of these variables from the equation. Firstly we can eliminate a from both equations to find b. To do this, we can multiply Equation 1 by 3 and Equation 2 by 2. This gives us: 6a-15b=33, 6a+4b=14. If we take away Equation 1 from Equation 2, we are left with: -15b-4b=33-14. Solving this gives: -19b=19, b=-1. Now that we have obtained b, we can substitute this value back into one of our original equations to obtain a: 2a-5b=11, 2a+5=11, 2a=6, a=3. Hence a=3, b=-1. Note:You can also solve these equations by elimination b first rather than a, you will still obtain the same answer.

GC
Answered by Gemma C. Maths tutor

15144 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

James wins the lottery and gets £200,000. He decides to spend 10% of his winnings and invest the rest. From the money he has invested, he receives interest of 3% per year. How much money does James have after 5 years (to the nearest pound)?


solve: [(3x-2)/4] - [(2x+5)/3] = [(1-x)/6]


How would you solve the simultaneous equations y=x+1 and y=4x-2


How do you solve two simultaneous equations? (i.e. 5x + y =21 and x - 3y =9)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences