Differentiate e^(xsinx)

Here you need to use the formula that the differential of e^f(x), where f(x) is any function, is equal to f'(x)e^f(x). So for our function we differentiate xsinx using product rule to give sinx + xcosx. By using the formula above we can show that the answer is (sinx + xcosx)e^(xsinx).

SL
Answered by Samuel L. Maths tutor

8628 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A line has an equation y = e^(2x) - 10e^(x) +12x, find dy/dx


Prove that the d(tan(x))/dx is equal to sec^2(x).


Find the two real roots of the equation x^4 - 5 = 4x^2 . Give the roots in an exact form. [4]


How do I differentiate a quadratic to the power n?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences