When would you apply the product rule in differentiation and how do you do this?

The product rule is used to differentiate a function when it is in the form y= u(x)v(x). To use the rule you differentiate u(x) and multiply that by v(x), and then add that to the differential of v(x) multiplied by u(x). This gives you the differential of y in the form dy/dx= vdu/dx + u*dv/dx.

RS
Answered by Robin S. Maths tutor

3652 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The quadratic equation 2x^2+8x+1=0 has roots a and b. Write down the value of a+b and ab and a^2+b^2.


Simplify: (log(40) - log(20)) + log(3)


Find the area between the curve y = 8 + 2x - x^2 and the line y = 8 - 2x.


Differentiate y = (3x − 2)^4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences