When would you apply the product rule in differentiation and how do you do this?

The product rule is used to differentiate a function when it is in the form y= u(x)v(x). To use the rule you differentiate u(x) and multiply that by v(x), and then add that to the differential of v(x) multiplied by u(x). This gives you the differential of y in the form dy/dx= vdu/dx + u*dv/dx.

RS
Answered by Robin S. Maths tutor

3893 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve x² ≥ | 5x - 6 | (Question from AQA Core 3 June 2016)


find the integral for xe^10x


Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to "integral between 1 and 3 of" 1/sqrt(1+x^3) dx giving your answer to three significant figures.


A curve has equation y = x^3 - 6x^2 - 15x. The curve has a stationary point M where x = -1. Find the x-coordinate of the other stationary point on the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning