When would you apply the product rule in differentiation and how do you do this?

The product rule is used to differentiate a function when it is in the form y= u(x)v(x). To use the rule you differentiate u(x) and multiply that by v(x), and then add that to the differential of v(x) multiplied by u(x). This gives you the differential of y in the form dy/dx= vdu/dx + u*dv/dx.

RS
Answered by Robin S. Maths tutor

3606 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = (sin(6x))(sec(2x) ), find dy/dx


Integrate the following function by parts and reduce it to it's simplest form. f(x) = ln(x).


The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.


Let p(x) = 30 x^3 -7 x^2 - 7 x + 2. Prove that (2x + 1) is a factor of p(x) and factorise p(x) completely.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences