Solve equation 1/x + x^3 + 5x=0

For x!=0, multiply the equation by x to get x^4+5x^2+1=0. Then substitute t=x^2 where t>=0. So the equation has a form t^2+5t+1. Then find the discriminant and two roots. One of the roots t2<0 doesn't meet the condition for t>=0 so we take t1=x^2, then we find two x roots, and have a final solution.

JO
Answered by Jakub O. Maths tutor

4202 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that x^2+6x+11 can be written in as (x+p)^2+q, where p and q are integers to be found.


Express (5sqrt(3)-6)/(2sqrt(3)+3) in the form m+nsqrt(3) where m and n are integers. [Core 1]


A ball of mass m moves towards a ball of mass km with speed u. The coefficient of restitution is 0. What is the final velocity if the first ball after the collision.


A ball is thrown in the air. The height of the ball at time t is given by: h=5+4t-2t^2. What is its maximum height? At what time does the ball reach this height?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning