Solve equation 1/x + x^3 + 5x=0

For x!=0, multiply the equation by x to get x^4+5x^2+1=0. Then substitute t=x^2 where t>=0. So the equation has a form t^2+5t+1. Then find the discriminant and two roots. One of the roots t2<0 doesn't meet the condition for t>=0 so we take t1=x^2, then we find two x roots, and have a final solution.

JO
Answered by Jakub O. Maths tutor

4002 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate e^x sin x dx


A cubic polynomial has the form p(z)=z^3+bz^2+cz+d, z is Complex and b, c, d are Real. Given that a solution of p(z)=0 is z1=3-2i and that p(-2)=0, find the values of b, c and d.


Find the values of x, where 0 < x < 360, such that x solves the equation: 8(tan[x])^2 – 5(sec[x])^2 = 7 + 4sec[x]


Differentiate the equation 4x^5 + 2x^3 - x + 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning