Solve equation 1/x + x^3 + 5x=0

For x!=0, multiply the equation by x to get x^4+5x^2+1=0. Then substitute t=x^2 where t>=0. So the equation has a form t^2+5t+1. Then find the discriminant and two roots. One of the roots t2<0 doesn't meet the condition for t>=0 so we take t1=x^2, then we find two x roots, and have a final solution.

JO
Answered by Jakub O. Maths tutor

4191 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If f(x) = (3x-2) / x-5 x>6, find a.) ff(8) b.) the range of f(x) c.) f^-1(x) and state its range.


How can you find the coefficients of a monic quadratic when you know only one non-real root?


The polynomial f(x) is defined by f(x) = 18x^3 + 3x^2 + 28x + 12. Use the Factor Theorem to show that (3x+2) is a factor of f(x).


Work out the equation of the tangent at x = 3, knowing that f(x) =x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning