How do I differentiate a quadratic to the power n?

To do this we will use the chain rule, whereby dy/dx = dy/du * du/dx. So if y = (ax^2+bx+c)^n then we will say that u = ax^2+bx+c. Therefore y =u^n. So to find dy/dx we differentiate u with respect to x, which = 2ax +b, and multiply this by the differential of y =u^n, which is nu^(n-1). Therefore dy/dx = nu^(n-1) * (2ax+b) Subbing the original equation in for u leads to dy/dx = n(2ax+b)(ax^2+bx+c)^(n-1)

AA
Answered by Alex A. Maths tutor

5038 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y=(4x^2)lnx, find f"(x) when x=e^2


Differentiate (3x^2-5x)/(4x^3+2x^2)


What is the velocity of the line from vector A(3i+2j+5k) to vector B(10i-3j+2k)?


Integrate xsin(x) by parts between the limits of -pi/2 and +pi/2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences