A curve has equation y=x^2 + (3k - 4)x + 13 and a line has equation y = 2x + k, where k is constant. Show that the x-coordinate of any point of intersection of the line and curve satisfies the equation: x^2 + 3(k - 2)x + 13 - k = 0

When we deal with points of interception, this immediately indicates that these two equations have to equal. Therefore, begin by equaling these two equations: x^2 + (3k - 4)x + 13 = 2x + k Bring all figures to one side, like the answer shows you to do, and open out any brackets, so we can later simplify: x^2 + 3kx - 4x + 13 - k - 2x = 0 Simplify: x^2 + 3kx - 6x - k + 13 = 0 The answer shows that you now need to simplify the x terms, hence resulting in the final equation: x^2 + 3(k - 2)x + 13 - k = 0

HW
Answered by Helena W. Maths tutor

11450 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = x^4 + x^(1/3) + 3, find dy/dx


Do the following vector equations intersect? l = (1 + μ)i + (2 - μ)j + (2μ - 5)k, and m = 2λi + 3j + (2 + λ)k.


Calculate the value of the definite integral (x^3 + 3x + 2) with limits x=2 and x=1


How do I differentiate the trigonometric functions sin(x) and cos(x) ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences