Solve the following simultaneous equations: 2x - y = 7 and x^2 + y^2 = 34

First, clearly write the two equations above one another, and label them (1) and (2). Rearrange the linear equation (the one with no squared variables) to make y the subject of the equation. You should get y = 2x - 7. Substitute this value of y into the other equation. Remember that you must squared the whole expression of y that you have substituted. You should get x^2 + (2x-7)^2 = 34. Expand all the brackets and group all like terms. By this point you should only have x's left. Since we have some x^2 and some only x, look to form a quadratic equation: 5x^2 - 28x +15 = 0. You can now use the quadratic formula to find x. Use your values of x in one of your original simultaneous equations to find two values of y.

TF
Answered by Tobias F. Maths tutor

19352 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

I have a bag with 4 different coloured marbles. Blue, green, red, and orange. I have 2x,7,7x + 5,4x -3 of each coloured marble respectively. If the probability of a green marble being picked is 7/100, find the probability of an orange marble being picked.


find the gradient of the line y=2x^2-12x+16 at the coordinates (5,6)


Solve the simultaneous equations for x and y: 3x+2y = 14 and 5x-y = 6


The mean mass of a squad of 19 hockey players is 82 kg A player of mass 93 kg joins the squad. Work out the mean mass of the squad now.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences