A curve is defined by the parametric equations x=t^2/2 +1, y=4/t -1. Find the gradient of the curve when t =2.

Firstly we would differentiate each equation with respect to t to find dx/dt and dy/dt- which gives us dx/dt=t and dy/dt=-4t^-2. Once you have found these you must divide dy/dt by dx/dt (or dy/dt x dt/dx) which is dy/dx= -4t^-3. Then you can sub t=2 into your dy/dx to find the gradient of the curve at that point to find the answer is -1/2.

AV
Answered by Asha V. Maths tutor

7870 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

ABCDEF


You are given the function f(x)=x^3-x^2-7x+3, and that x=3 is a root of f(x)=0. Find the exact values of the other 2 roots. (6 marks)


Find the equation of the tangent to the curve y=x^3-4x^2+2 at the point (3,-7)


Integral of (2(x^3)-7)/((x^4)-14x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning