Simplify and solve for x. log(x+1)+log 5=2. Note, log is the natural log in this case

so lets deal with 2 first. We can express 2 in terms of log5 by the laws of logs. nlogx=logx^n. re-writing 2 as 2log5=log25 we now have log(x+1)+log5=log25. lets apply a different log law: log(a)-log(b)=log(a/b). Therefore we get log(x+1)=log(25)-log(5)=log(25/5)=log(5). Now we can cancel the logs to get x+1=5 and now solve algebraically giving x=4

LM
Answered by Liam M. Maths tutor

6521 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the normal distribution and how do I use it?


Solve the equation " 2sec^2(x) = 5tanx " for 0 < x < π


Form the differential equation representing the family of curves x = my , where, m is arbitrary constant.


Find the general solution to the differential equation '' (x^2 + 3x - 1) dy/dx = (2x + 3)y ''


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences