Simplify and solve for x. log(x+1)+log 5=2. Note, log is the natural log in this case

so lets deal with 2 first. We can express 2 in terms of log5 by the laws of logs. nlogx=logx^n. re-writing 2 as 2log5=log25 we now have log(x+1)+log5=log25. lets apply a different log law: log(a)-log(b)=log(a/b). Therefore we get log(x+1)=log(25)-log(5)=log(25/5)=log(5). Now we can cancel the logs to get x+1=5 and now solve algebraically giving x=4

LM
Answered by Liam M. Maths tutor

6840 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The probability distribution of the random variable X is given by the formula P(X = x) = 0.09+0.01x^2 for x= 1,2,3,4,5 ). Find E(X).


The curve y = 2x^3 -ax^2 +8x+2 passes through the point B where x = 4. Given that B is a stationary point of the curve, find the value of the constant a.


Given that y= 1/ (6x-3)^0.5 find the value of dy/dx at (2;1/3)


Integrate the following function: f(x) = 8x^3 + 1/x + 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning