Differentiate y = √(1 + 3x²) with respect to x

To solve this question, we need to use the chain rule, because the function is too complicated to solve simply by inspection. The chain rule says that dy/dx = dy/du × du/dx, where u is a function of x. In this example, if we let u = 1 + 3x², then we get y = √(u), which means when we differentiate with respect to u, dy/du = 1/(2√(u)). u = 1 + 3x² which means du/dx = 6x, so dy/dx = 6x/(2√(u)), or 3x/√(1 + 3x²). (This can also be expressed as 3x(1 + 3x²)^-0.5).

WT
Answered by Walter T. Maths tutor

8232 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0


Show that the funtion (x-3)(x^2+3x+1) has two stationary points and give the co-ordinates of these points


A curve C has the equation x^3 +x^2 -10x +8. Find the points at which C crosses the x axis.


1)Simplify sqrt 98 - sqrt 32, givimg your answer in the form k sqrt 2 where k is an integer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning