Differentiate y = √(1 + 3x²) with respect to x

To solve this question, we need to use the chain rule, because the function is too complicated to solve simply by inspection. The chain rule says that dy/dx = dy/du × du/dx, where u is a function of x. In this example, if we let u = 1 + 3x², then we get y = √(u), which means when we differentiate with respect to u, dy/du = 1/(2√(u)). u = 1 + 3x² which means du/dx = 6x, so dy/dx = 6x/(2√(u)), or 3x/√(1 + 3x²). (This can also be expressed as 3x(1 + 3x²)^-0.5).

WT
Answered by Walter T. Maths tutor

8008 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to "integral between 1 and 3 of" 1/sqrt(1+x^3) dx giving your answer to three significant figures.


What does dy/dx represent?


A curve has equation y = 4x + 1/(x^2) find dy/dx.


A ball is projected vertically upwards from the ground with speed 21 ms^–1. The ball moves freely under gravity once projected. What is the greatest height reached by the ball?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences