Find the equation of the straight line that passes through the points (1,2) and (2,4)

Remember that the equation of a straight line (when given two points OR a point and a gradient) is y-y_1 = m(x-x_1) where m is the gradient and (x_1,y_1) is a point on the line.

Since we have two points, we must find the gradient between them. We can do this using m=(y_1-y_2)/(x_1-x_2). From the two points in the question, we get m=(2-4)/(1-2). This gives m=2.

Now we can use this gradient with either point from the question to give the equation of our line.

So, y-2=2(x-1) and we can rearrange this to get y=2x.

MM
Answered by Murray M. Maths tutor

9118 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve has equation y = x^3 - x^2 - 5x + 7 and the straight line has equation y = x + 7. One point of intersection, B, has coordinates (0, 7). Find the other two points of intersection, A and C.


How to draw the inverse of a function ?


Find the equation of the line that is perpendicular to the line 3x+5y=7 and passes through point (-2,-3) in the form px+qy+r=0


A stone is thrown from a bridge 10m above water at 30ms^-1 30 degrees above the horizontal. How long does the stone take to strike the water? What is its horizontal displacement at this time?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning