Question 3 on the OCR MEI C1 June 2015 paper. Evaluate the following. (i) 200^0 (ii) (9/25)^(-1/2)

For both parts you have to remember some of the properties of powers. Rule 1: x^0 = 1. Rule 2: x^(-n) = 1/(x^n). Rule 3: x^(1/n) = n-th root of x. For part (i) we can use rule 1 to see that 200^0 = 0. For part (ii) we can first rewrite (9/25)^(-½) as (9/25) ^ (-1) * (½) = ((9/25) ^ (-1) ) ^ (½). Using rule 2 to evaluate the negative power we can see ((9/25) ^ (-1) )^ (½) = ((25/9) )^ (½). Using rule 3 we can see ((25/9) )^ (½) = 5/3. If the student finds this difficult, I would take the opportunity to revisit other properties of powers like x^(m+n) = x^m * x^n. Once I had explained the concepts I would use another example like (8/27)^(-1/3) to see if the student now understands it better.

TK
Answered by Tom K. Maths tutor

3616 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the sum of the infinite geometric series 1 + 1/3 + 1/9 +1/27 ...?


Differentiate y = 15x^3 + 24x^2 + 6 with respect to x.


Evaluate the following integral: (x^4 - x^2 +2)/(x^2(x-1)) dx


What is the intergral of 6.x^2 + 2/x^2 + 5 with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences