Solve the differential equation dy/dx=(y^(1/2))*sin(x/2) to find y in terms of x.

Here, we must first rearrange our equation so all x terms are on one side and all y terms are on the other. Multiplying both sides by dx and diving both by y^(1/2) gives us y^(-1/2)dy = sin(x/2)dx, which is a directly integrable equation. Integrating both sides, we get 2y^(1/2) = -2cos(x/2) + c, where c is some arbitrary constant of integration. Rearranging to find y, we get y=(-2cos(x/2) + A)^2, where A=c/2.

AJ
Answered by Alex J. Maths tutor

7134 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that cos(4x) = 8(cos^4(x))-8(cos^2(x)) + 1


How can I remember the difference between differentiation and integration?


Why is there always constant of integration when you evaluate an indefinite integral?


Find the area under the curve y=xsin(x), between the limits x=-pi/2 and x=pi/2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning