How would I differentiate a function of the form y=(f(x))^n?

A function of the form shown in the question is called a composite function, it is a 'function of a function'. It can be differentiated by expanding the brackets and differentiating each term individually but this can get messy very quickly, especially if the value of n is greater than 2. Alternatively, the chain rule can be used to differentiate such a function. Lets use an example of y=(2x-5)^4.

The chain rule is: dy/dx=du/dx*dy/du. Hence, we need to obtain an expression for u. In this case u=2x-5 meaning that y=u^4. The expressions for u and y can be differentiated respectively to obtain du/dx and dy/du using basic differentiation. du/dx=2; dy/du=4u^3. dy/dx can be obtained by multiplying these together and substituting the original expression for u back in.

dy/dx=8u^3=8(2x-5)^3

MW
Answered by Matthew W. Maths tutor

4033 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=(sin(x))^(2)


Calculate the volume of revolution generated by the function, f(x) = (3^x)√x, for the domain x = [0, 1]


how to turn a fraction in the form of (x + a)/(x + b)^2 into partial fractions?


g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning