Can you explain where the "Integration by parts" formula comes from?

Sure. If you remember how to calculate d/dx(uv) then you can understand how integration by parts works. d/dx(uv) = u(dv/dx) + v(du/dx). we can re-arrange this: u(dv/dx) = d/dx(uv) - v(du/dx). Now integrating both sides: |u.dv = uv - |v.du (Where I've used "|" for the integration sign) which is the integration by parts formula.

All you need to do is work out what you use as "u" and "dv", which comes down to experience.

CF
Answered by Christian F. Maths tutor

3885 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Determine whether the line with equation 2x+ 3y + 4 = 0 is parallel to the line through the points with coordinates (9, 4) and (3, 8).


Why bother with learning calculus?


Differentiate, with respect to x, e^3x + ln 2x,


The rate of growth of a population of micro-organisms is modelled by the equation: dP/dt = 3t^2+6t, where P is the population size at time t hours. Given that P=100 at t=1, find P in terms of t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning