Can you explain where the "Integration by parts" formula comes from?

Sure. If you remember how to calculate d/dx(uv) then you can understand how integration by parts works. d/dx(uv) = u(dv/dx) + v(du/dx). we can re-arrange this: u(dv/dx) = d/dx(uv) - v(du/dx). Now integrating both sides: |u.dv = uv - |v.du (Where I've used "|" for the integration sign) which is the integration by parts formula.

All you need to do is work out what you use as "u" and "dv", which comes down to experience.

CF
Answered by Christian F. Maths tutor

3886 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I know how to integrate, but I still never see any real world example of it, so it is difficult to understand. Why is it useful?


Whats the Product rule for differentiation and how does it work?


The curve C has equation y = 2x^2 - 12x + 16 Find the gradient of the curve at the point P (5, 6).


find the integral of f'(x)=2x+5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning