Can you explain where the "Integration by parts" formula comes from?

Sure. If you remember how to calculate d/dx(uv) then you can understand how integration by parts works. d/dx(uv) = u(dv/dx) + v(du/dx). we can re-arrange this: u(dv/dx) = d/dx(uv) - v(du/dx). Now integrating both sides: |u.dv = uv - |v.du (Where I've used "|" for the integration sign) which is the integration by parts formula.

All you need to do is work out what you use as "u" and "dv", which comes down to experience.

CF
Answered by Christian F. Maths tutor

3455 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Sketch the graph y=Ax^2 where A is a constant


Where z is a complex number, what is the cartesian form of |Z-2+3i| = 1?


Derive Law of Cosines using Pythagorean Theorem


Express (4x)/(x^2-9) - (2)/(x+3) as a single fraction in its simplest form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences