Top answers

Further Mathematics
All levels

Find the general solution of: y'' + 4y' + 13y = sin(x)

First we find the auxilary equation by substituting y with m^0, y' with m^1 and y'' with m^2. We get m^2 + 4m + 13 and find the roots using the differential equation, m = (-4 +- (16-4x1x13)^0.5)/(2x1).

TT
9114 Views

Write 1 + √3i in modulus-argument form

In order to understand this question we must define what modulus-argument form is. The modulus of a complex number is its distance from the origin (0,0) on the Argand Diagram. It is written as |z|. The ar...

TM
32964 Views

If the equation of a curve is x^2 + 9x + 8 = y, then differentiate it.

First we must establish how to differentiate terms individually. This is done by using the simple method of multiplying the X by the power, and subtracting one away from the power. To make it easier we wi...

TT
3116 Views

Solve the inequality x^3 + x^2 > 6x

Start by moving all the terms to one side of the inequality. In this case it's easiest to move the 6x to the left hand side by subtracting 6x from both sides, so that you are left with x^3 + x^2 - 6x >...

MS
7184 Views

How to determine the rank of a matrix?

first the definition of the rank of a matrix is "maximal number of linearly independent column vectors in the matrix"

then the question could be rephrased to " how many ind...

YS
4046 Views

We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning