Find the equation of the tangent at x=1 for the curve y=(4x^2+1)^3

The tangent is the straight line passing through x=1, touching the curve only at that point. For x=1, y=(4+1)^3=125 Using the chain rule we obtain dy/dx = 38x(4x^2+1)^2. To then get the gradient of the tangent we take dy/dx at x=1. dy/dx[x=1]= 38(4+1)^2 = 600. As tangent is a straight line the equation is in the form y=mx+c with m = dy/dx[x=1]. We simply sub in (x,y)=(1,125) and m=600 to find c. 125=600+c c=-475 So the equation of the tangent is y=600x-475

JH
Answered by Jacob H. Maths tutor

3297 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the partial fraction expansion of (x+2)/((x+1)^2)?


Binomial expansion of (1+4x)^5 up to x^2


The function f is defined for all real values of x as f(x) = c + 8x - x^2, where c is a constant. Given that the range of f is f(x) <= 19, find the value of c. Given instead that ff(2) = 8, find the possible values of c.


How do you integrate by parts?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences