Integrate the function f(x) = ax^2 + bx + c over the interval [0,1], where a, b and c are constants.

Firstly remember that d/dx(x^n) = nx^(n-1). And so the antiderivative, or integral of x^n, i.e. \int(x^n) = x^(n+1)/(n+1) + C (where C is the integration constant). When integrating with limits, i.e. when we define an interval that we're integrating over, we do not have to worry about the constant C, and so for example: \int(x^3) over [0,1] will be x^4/4 (x=1 - x=0), i.e. = 1^4/4 - 0^4/4 = 1/4.

Hence, for our given function f(x), \int(f(x)) over [0,1] will be ax^3/3 + bx^2/2 + cx/1 (x=1 - x=0) = a/3 + b/2 + c.

AA
Answered by Anvarbek A. Maths tutor

4255 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of the function f:(0,oo)->R, f(x)=x^x.


Find the volume of revolution when the curve defined by y=xe^(2x) is rotated 2*pi radians about the x-axis between x=0 and x=1


A curve has the equation y=x^3+2x+15. Find dy/dx.


How would the integral ∫x^2sin2xdx be solved using integration by parts?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences