Integrate the function f(x) = ax^2 + bx + c over the interval [0,1], where a, b and c are constants.

Firstly remember that d/dx(x^n) = nx^(n-1). And so the antiderivative, or integral of x^n, i.e. \int(x^n) = x^(n+1)/(n+1) + C (where C is the integration constant). When integrating with limits, i.e. when we define an interval that we're integrating over, we do not have to worry about the constant C, and so for example: \int(x^3) over [0,1] will be x^4/4 (x=1 - x=0), i.e. = 1^4/4 - 0^4/4 = 1/4.

Hence, for our given function f(x), \int(f(x)) over [0,1] will be ax^3/3 + bx^2/2 + cx/1 (x=1 - x=0) = a/3 + b/2 + c.

AA
Answered by Anvarbek A. Maths tutor

4539 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the range of a degree-2 polynomial function such as 2x^2 +1, or x^2 + 2x - 3.


How and when do you use integration by parts?


How do I show two lines are skew?


How do I calculate where a function is increasing/decreasing?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning