Simplify 3x^(2)+13x-30/x^(2)-32

First of all spot that the bottom of the fraction is a result of the difference of two squares and can be rearranged to (x+6)(x-6), making the fraction equal to 3x^(2)+13x-30/(x+6)(x-6). Use this knowledge to look if the top of the fraction can be rearranged into two brackets, one of which is either (x+6) or (x-6). Rearrange 3x^(2)+13x-30 to (x+6)(3x-5) making the fraction equal to (x+6)(3x-5)/(x+6)(x-6). Cancel (x+6) from both the top and bottom of the fraction leaving the simplified version as (3x-5)/(x-6)

NP
Answered by Nicolaas P. Maths tutor

3948 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Bag A contains £7.20 in 20p coins. Bag B contains only 5p coins. The number of coins in bag B is three-quarters of the number of coins in bag A. How much money is in bag B?


The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5 Work out the area of the triangle.


How do I think of coordinates of a point?


Make x the subject of the equation y=(3x+5)/(4-x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences