Simplify 3x^(2)+13x-30/x^(2)-32

First of all spot that the bottom of the fraction is a result of the difference of two squares and can be rearranged to (x+6)(x-6), making the fraction equal to 3x^(2)+13x-30/(x+6)(x-6). Use this knowledge to look if the top of the fraction can be rearranged into two brackets, one of which is either (x+6) or (x-6). Rearrange 3x^(2)+13x-30 to (x+6)(3x-5) making the fraction equal to (x+6)(3x-5)/(x+6)(x-6). Cancel (x+6) from both the top and bottom of the fraction leaving the simplified version as (3x-5)/(x-6)

NP
Answered by Nicolaas P. Maths tutor

4075 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The point P has coordinates (3, 4) The point Q has coordinates (a, b) A line perpendicular to PQ is given by the equation 3x + 2y = 7 Find an expression for b in terms of a.


Solve 2x^2 + 7x + 6 = 0


Expanding and simplifying, e.g. (x+4)(x-2)


Solve the simultaneous equations 5x + y = 21 x - 3y = 9


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences