How do you differentiate y=sin(cos(x))?

To solve this question we will use the chain rule, as we can see that we have one function being applied to another, i.e sin is being applied to cos(x).

This means we are able to replace the original function (cos(x)) with a dummy variable, in this case we will use u.

i.e y=sin(u), u=cos(x).

Firstly, we will differentiate y with respect to u:

y=sin(u).

sin differentiates to cos, so therefore we have:

dy/du=cos(u).

Secondly, we will differentiate u with respect to x:

u=cos(x).

cos when differentiated becomes -sin, so therefore we have:

du/dx=-sin(x).

We will now use the chain rule:

i.e dy/dx=dy/du*du/dx.

Replacing the differentials we found earlier, means that:

dy/dx=cos(u)*-sin(x).

We will now replace u with cos(x).

This gives:

dy/dx = cos(cos(x))*-sin(x).

MP
Answered by Marcel P. Maths tutor

17494 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the Quotient rule, Find dy/dx given that y = sec(x)


If a 5 metre ladder is resting against a wall and the bottom of the ladder is 3 metres away from the wall, and someone pulls the bottom of the ladder away at a speed of 1 metre per second, calculate the speed of the top of the ladder after t seconds


How do I differentiate: (3x + 7)^2?


Find the area under the curve of y=x^2 between the values of x as 1 and 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning