Photons with 605 THz frequency strike metal of 1.2eV work function. Calculate the maximum energy of photoelectrons and their velocity. What amount of energy is necessary to stop all photoelectrons? (Planck's constant. electron mass and charge are given)

Start off by converting all given data into SI units to avoid confusion later on. The photoelectric effect happens when photons with energy larger than work function strike metal, thus releasing the electrons from it. Write down the formula for photoelectric effect and check if all terms are understood: KE = E(photons) - W = hf - W (W- work function, KE- kinetic energy, f- frequency of photons). Put in the values to find kinetic energy: KE = 2.0810^-19 J. For velocity just adjust the kinetic energy formula from KE=(mv^2)/2 to v=(2KE/m)^1/2. Plug in the values and find the velocity v = 675752.2 m/s. As for the last part, it is enough to use the same amount as maximum kinetic energy to completely stop all photoelectrons. The stopping energy must be higher or equivalent to the photoelectron energy.

IV
Answered by Ignas V. Physics tutor

2418 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A single wind turbine has a maximum power output of 2 000 000 W. The wind turbine operated continuously at maximum power for 6 hours. Calculate the energy output in kilowatt-hours of the wind turbine.


explain how the resistance of a filament lamp changes as the potential difference across it increases


On a pirate ship, a 1.6m plank is held at one end to the ship. A 65kg pirate walks the plank with his 1.1kg parrot following 40cm behind him. What is the total clockwise moment acting on the plank when the pirate reaches the end of it?


Describe how the control rods in a nuclear reactor are used to regulate nuclear fission in a nuclear reactor.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning