Photons with 605 THz frequency strike metal of 1.2eV work function. Calculate the maximum energy of photoelectrons and their velocity. What amount of energy is necessary to stop all photoelectrons? (Planck's constant. electron mass and charge are given)

Start off by converting all given data into SI units to avoid confusion later on. The photoelectric effect happens when photons with energy larger than work function strike metal, thus releasing the electrons from it. Write down the formula for photoelectric effect and check if all terms are understood: KE = E(photons) - W = hf - W (W- work function, KE- kinetic energy, f- frequency of photons). Put in the values to find kinetic energy: KE = 2.0810^-19 J. For velocity just adjust the kinetic energy formula from KE=(mv^2)/2 to v=(2KE/m)^1/2. Plug in the values and find the velocity v = 675752.2 m/s. As for the last part, it is enough to use the same amount as maximum kinetic energy to completely stop all photoelectrons. The stopping energy must be higher or equivalent to the photoelectron energy.

IV
Answered by Ignas V. Physics tutor

2672 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

The cyclist used the brakes to slow down and stop the bicycle. A constant braking force of 140 N stopped the bicycle in a distance of 24 m. Calculate the work done by the braking force to stop the bicycle. Give the unit. (3 Marks)


What is a convection current?


A lamp has a rating of 18V 9W. How much energy is transferred to the bulb in 5 minutes? Calculate the current through it when connected to a 18V supply.


Describe the transfers of energy occurring when a ball is thrown vertically up in the air and falls back down to Earth, assuming there is no friction from the air.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning