Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.

Since Rsin(x+y)=Rsin(x)cos(y)+Rsin(y)cos(x), we can set Rcos(y)=4 (1) and Rsin(y)=3 (2) on comparison to the desired equation. Considering (2) divided by (1) we see that tan(y)=sin(y)/cos(y)=3/4 so y=atan(3/4). Considering (1)^2+(2)^2 we see that R^2=25 so R=5 and we are done.

WV
Answered by William V. Maths tutor

11500 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that cosh(x+y) = cosh(x)cosh(y) + sinh(x)sinh(y)


Differentiate with respect to x: 4(x^3) + 2x


a) Point A(6,7,2) lies on l1. Point B(9,16,5) also lies on l1. Find the distance between these two points. b) l2 lies in the same z plane as l1 and crosses l1 at A and is perpendicular to l1. Express l2 in vector form.


Find the gradient of 4(8x+2)^4 at X coordinate 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning