MH
Answered byMax H.Maths Tutor

How to integrate cos^2(x) ? ("cos squared x")

We can't integrate cos^2(x) as it is, so we want to change it into another form. We can easily do this using trig identities.

1) Recall the double angle formula:

cos(2x) = cos^2(x) - sin^2(x).

2) We also know the trig identity sin^2(x) + cos^2(x) = 1, so combining these we get the equation cos(2x) = 2cos^2(x) -1.

3) Now, we can rearrange this to give: cos^2(x) = (1+cos(2x))/2.

4) So, we have an equation which gives cos^2(x) in a nicer form, which we can easily integrate using the reverse chain rule.

5) This eventually gives us an answer of:

x/2 + sin(2x)/4 +c

Related Maths A Level answers

All answers ▸

Sketch the curve y = (2x-1)/(x+1) stating the equations of any asymptotes and coordinates of the intersection with the axis. As an extension, what standard transformations from C1 could you use on y=1/x to get this curve?


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


Find the integral of y= e^3x / 1+e^x using calculus.


How does integration by parts work?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning