P is directly proportional to Q. When Q = 6, P = 15. Work out the value of P when Q = 3.5

If P is directly proportional to Q then that means if Q increases P will also increase. If Q decreases P will also decrease. Two values that are directly proportional to each other are related to each other with a proportionality constant. this can be written like this P is directly proportional to Q P =kQ the 'k' represents the proportionality constant now just plug in the first set of information, when Q=6, P=15 15=k x 6 we want to find out the actual value of the constant k, so we rearrange the equation and make k the subject. all we need to do here is divide both sides by 6. 15/6=k now we know the value of the constant! we go back to our original equation and plug in the value of k we found P=kQ P= (15/6)Q Finally, we just need to find P when Q =3.5, so we plug in Q P=(15/6) x 3.5 P =8.75 Now to check our answer with common sense! when Q=6, P was =15. as Q has now DECREASED to 3.5, it makes sense for P to also DECREASE, which indeed it has, from 15 to 8.75! 

ZT
Answered by Zsolt T. Maths tutor

41494 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 720 boys and 700 girls in a school. The probability that a boy chosen at random studies French is 2/3 The probability that a girl chosen at random studies French is 3/5. Work out the number of students in the school who study French.


Make y the subject of the equation: t=(y+2)/(4-y)


Let f(x)= x/5 + 1 . Find f^-1(x)


Anna has 6 bananas. Ben has 2.5 times more bananas than Anna. Callum has a third as many bananas as Anna and Ben have together. How many bananas do Anna, Ben and Callum have together?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning