Differentiate y=x^3*(x^2+1)

As this is a product of two functions it is necessary to use the product rule for differentiation. Therefore one of the functions must labeled v and the other u. i.e. u=x^3 and v=(x^2+1). It is then necessary to differentiate each of those functions seperately so that du/dx=3x^2 and dv/dx=2x. The final step is to multiply v by du/dx and multiply v by du/dx then add the two together as follows: dy/dx=2x^4+3x^2*(x^2+1)

BJ
Answered by Bevan J. Maths tutor

3755 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following equation: y = 2(x^3) - 6x


y = x^3 ln x. Find dy/dx


What is the equation of the normal line to the curve y = 3x^3 - 6x^2 at the point (1, 4)?


What is the indefinite integral of (x^4)*(-sin(x)) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning