Differentiate y=x^3*(x^2+1)

As this is a product of two functions it is necessary to use the product rule for differentiation. Therefore one of the functions must labeled v and the other u. i.e. u=x^3 and v=(x^2+1). It is then necessary to differentiate each of those functions seperately so that du/dx=3x^2 and dv/dx=2x. The final step is to multiply v by du/dx and multiply v by du/dx then add the two together as follows: dy/dx=2x^4+3x^2*(x^2+1)

BJ
Answered by Bevan J. Maths tutor

3569 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I remember the trigonometry identities from C3 in the exam?


Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.


How do you find the angle between two lines in three dimensional vector space given two points on line 1 and the vector equation of line 2


In a science experiment a substance is decaying exponentially. Its mass, M grams, at time t minutes is given by M= 300e^-0. 5t


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning