a) Simplify 2ln(2x+1) - 10 = 0 b) Simplify 3^(x)*e^(4x) = e^(7)

a) To answer this question, one must be familiar with laws of logs, more sprecifically the rules when applied to the natural log of x, and exponentials (e). 2ln(2x+1) - 10 = 0 Step 1) 2ln(2x+1) = 10 Step 2) ln(2x+1) = 10/2 = 5 Step 3) using the fact that e^(ln(x)) = x, e^(ln(2x+1)) = e^(5) = 2x + 1 Step 4) to find x on its own, we simply rearrange this equation to give x = (e^(5)-1)/2 which is the final answer.                                     b) This question again requires the knowledge of the laws of logs, specifically the natural log of x, and also the rule regarding division of exponential functions. 3^(x)*e^(4x) = e^(7) Step 1) ln(3^(x)*e^(4x)) = ln(e^(7)) = 7 Step 2) ln(3^(x)) + ln(e^(4x)) = 7 Step 3) using 2 different laws of logs, (lna^b = blna) and (lne^(a) = a), xln3 = 7 - 4x Step 4) simple rearrangment gives xln3 + 4x = 7 Step 5) Factorising gives x(ln3 + 4) = 7 and therefore x = 7 / (ln3 + 4)

JB
Answered by Jordan B. Maths tutor

14216 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=(4x - 5)^5 by using the chain rule.


The height (h) of water flowing out of a tank decreases at a rate proportional to the square root of the height of water still in the tank. If h=9 at t=0 and h=4 at t=5, what is the water’s height at t=15? What is the physical interpretation of this?


Differentiate y = (x^2 + 1)^1/3


Factorise completely ( x − 4x^3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning