How do I rationalise the denominator of a fraction which consists of surds?

[Recall: the numerator of a fraction is the top number; the denominator refers to the bottom number. A surd is an irrational number, e.g. √3, √5, etc.]Given the following fraction:(a+√b)/(c-√b), where a,b and c are non-negative integers and b is not a square number.We can see that the denominator (c-√b) is irrational. To rationalise the denominator we take the following steps:1. Multiply BOTH the numerator and the denominator of our fraction by (c+√b) in order to eliminate the irrational surd in the denominator. Note: we perform this multiplication to both the numerator and denominator in order to preserve the value of the original fraction .2. We now have for our numerator: (a+√b)(c+√b), and for our denominator: (c-√b)(c+√b). Expand these brackets, thus we obtain the following fraction:(ac+(a+c)√b+b) / (c- b)Clearly we have succeeded in rationalising our denominator (whilst still maintaining the value of our original fraction) since (c2-b) is clearly a rational number, as required.Example:Write (5+7√3)/(5-3) in the form a+b3, where a and b are rational.Soln: We carry out the steps stated above;Multiply numerator and denominator by (5+√3), in doing so eliminating the irrational surd from our denominator. We thus obtain:{(5+7√3)(5+√3)} / {(5-√3)(5+√3)} (expand brackets)=(46+12√3) / (25+5√3-5√3 - 3)=(46+12√3) / (22)=23/11+(6/11)√3.Clearly, from our orginal hypothesis, a=23/11, b=6/11 are both rational numbers, thus we are done.

LD
Answered by Liam D. Maths tutor

9811 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write sqrt(50) in the form Asqrt(50) where A is an integer


How do you find the turning points of a graph and how do you if the point is a maximum or a minimum?


A block of mass 5kg is on a rough slope inclined at an angle of 30 degrees to the horizontal, it is at the point of sliding down the slope. Calculate the coefficient of friction between the block and the slope.


a curve is defined by y=2x^2 - 10x +7. point (3, -5) lies on this curve. find the equation of the normal to this curve


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning