solve the differential equation dy/dx = 6xy^2 given that y = 1 when x = 2

First step is to seperate the variables (EQ1) : (1/y^2) dy = 6x   Then we integrate each side seperately giving us (EQ2) : -1/y = 3x^2 + C (remembering to add 1 to the power and divide by the new power) subbing in the values for y (1) and x (2) we get - 1 = 12 + C. Therefore C = -13. Subbing this back into EQ2 and rearranging for y we get y = -1/(3x^2  - 13)

DM
Answered by Dylan M. Maths tutor

9783 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of arctan(x)


A curve C has equation: y = x^2 − 2x − 24x^1/2, x > 0; Find (i) dy/dx (ii) d^2y/dx^2


The polynomial p(x) is given: p(x)=x^3+2x^2-5x-6, express p(x) as the product of three linear factors


What is the equation of the curve that has gradient dy/dx=(4x-5) and passes through the point (3,7)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning