Explain how Differentiation by the chain rule works

If the expression to be differentiated is a (differentiable) function of another (differentiable) function, then the chain rule must be applied. For example y= f(g(x)), where f and g are both differentiable, then dy/dx = f'(g(x)).g'(x). To simplify this, it can be looked at as a simple substitution:
Let g(x)=u, then, the chain rule states that, dy/dx=(du/dx).(dy/du). For example, should the expression to be differentiated be (cos(x))^2, then let u=cosx, du/dx = -sin(x), y=u^2, dy/du=2u, therefore dy/dx = -sin(x).2(cos(x)).

GO
Answered by Gwyndaf O. Maths tutor

3962 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate e^(2x)


Find the coordinates of the point of intersection between the line L:(-i+j-5k)+v(i+j+2k) and the plane π: r.(i+2j+3k)=4.


(i) Find the coordinates of the stationary point on the curve y = 3x^2 − 6/x − 2. [5] (ii) Determine whether the stationary point is a maximum point or a minimum point.


Solve 4log₂(2)+log₂(x)=3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning