Find the stationary point on the line of y = 6x - x^2 and state whether this point is a maximum or a minimum

This question requires differentiating the equation to find where its gradient is equal to zero. Differentation is done via a simple equation -->  if y = xn then dy/dx = nxn-1

Therefore if y = 6x - x2  , then dy/dx = 6(x0) - 2x1   , so   dy/dx = 6 - 2x

The gradient is 0 at the stationary point, so 6 - 2x = 0           2x = 6        so x = 3

To find y, substitute (x=3) into the original formula to find y.     y = 6(3) - 32   = 18 - 9    = 9

The stationary point is (3,9), and to find out whether this is a maximum or minimum, x=4 can be subbed in to the formula to find the next point on the line. y = 6(4) - 42   =  24 - 16     =    8     so the next point is (4,8)

This is below the stationary point, so we can see that (3,9) is a maximum.

PW
Answered by Percy W. Maths tutor

5832 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For y=x/(x+4)^0.5, solve dy/dx


A block of mass 5kg is at rest on a smooth horizontal table, and connected to blocks of 3kg and 4kg which are hanging by strings via pulleys on either end of the table. Find the acceleration of the system and the tension in each string.


Find the stationary points on y = x^3 + 3x^2 + 4 and identify whether these are maximum or minimum points.


How do you integrate 3x^2 - 6x + 5 (wrt x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning