The first term of an arithmetic series is a and the common difference is d. The 12th term is 66.5 and the 19th term is 98. Write down two equations in a and d then solve these simultaneous equations to find a and d.

The first step is to recall the formula for arithmetic progressions: u(n) = a + (n-1)d We can then put all the information given in the question into this so u(12) = 66.5 = a + 11d and u(19) = 98 = a + 18d By lining up the two simultaneous equations as below, we can see if we take the first equation away from the second the a terms will cancel out: 66.5 = a +11d 98 = a + 18d By taking away the first from the second we get 31.5 = 7d from which we find d = 4.5 We can then use this value in the first equation because we now know 66.5 = a + 114.5 = a + 49.5 By rearranging we find a = 17 Using the second equation we can check both these values are right and we are done!

EW
Answered by Eleanor W. Maths tutor

6802 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve $\color{orange}{a}x^2 - \color{blue}{b}x + \color{green}{c} = 0$


The curve C has the equation y=((x^2+4)(x-3))/2*x where x is not equal to 0 . Find the tangent to the curve C at the point where x=-1 in the form y=mx+c


a) Point A(6,7,2) lies on l1. Point B(9,16,5) also lies on l1. Find the distance between these two points. b) l2 lies in the same z plane as l1 and crosses l1 at A and is perpendicular to l1. Express l2 in vector form.


Proof by Induction - "What's the point if we already know the answer?"


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences