How do you find the point or points of intersection of a straight line and a circle?

Given the equation of the straight line is: x+y=9 and the equation of the circle is: (x-2)2+(y-3)2=16 , find the point or points of intersection? The equation x+y=9 can be rearranged to make x=9-y. This equation equal to x can then be substituted into the equation of the circle to form (9-y-2)2+(y-3)2=16. If you simplify and square the bracket you get 2y2-20y+58=16. This can be simplified to 2(y-3)(y-7)=0. Thus y-7=0 so y=7 and y-3=0 so y=3. These are the y axis intersections of the circle and the line. At this point they both have the same x value and y value and therefore by definition touch. As there is two points the circle and line make contact it is an intersection, instead of a tangent (one point of contact). The x value can be found by substituting both y values into the equation of the line. For y=7 it yields the x value of 2 and for y=3 it yields the x value of 6.  The x and y values of the coordinate can then be substituted into the eqaution of the circle to confirm that no algebraic error has been made. 

EC
Answered by Edward C. Maths tutor

5354 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

An 1kg ball collides normally with a fixed vertical wall. Its incoming speed is 8 m/s and its speed after the collision is 4 m/s . Calculate the change in momentum of the particle. If the collision lasts 0.5 s calculate the impact force.


Solve the equation 3^(5x-2)=4^(6-x), and show that the solution can be written in the form log10(a)/log10(b).


A cannon at ground level is firing at a fort 200m away with 20m high walls. It aims at an angle 30 degrees above the horizontal and fires cannonballs at 50m/s. Assuming no air resistance, will the cannonballs fall short, hit the walls or enter the fort?


Find dy/dx in terms of t of the parametric equations x=4e^-2t, y=4 - 2e^2t


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning