1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.

To differentiate use formula.

multiply factor by power then minus one from power (where x is invloved)

dy/dx = 12x^3 - 24x^2

d^2y/dx^2 = 36x^2 - 48x (this is just a further differentiation)

b) to find stationary point, put value of x into gradient equation (dy/dx) and it should equal to zero (hence stationary)

c) put value of x into second derivative. answer = 48 = positive hence the nature of this point is positive

EI
Answered by Elysa I. Maths tutor

14879 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the area bound by the x-axis, the lines x=1 and x=3 and the curve y=3x^(2)-1/x ? Answer in exact form.


(A-Level) Find the coordinate of the stationary point of the curve y = 2x + 27/x^2


Find f(x^(1/2)+4)dx (Where f is the integral sign)


Use logarithms to solve 9^x=15


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning