theta = arctan(5x/2). Using implicit differentiation, find d theta/dx.

First, we must rearrange to give 2tan(θ) = 5x. Differentiate both sides with respect to x: 2sec2(θ)dθ/dx = 5 Use identity sin2(θ) + cos2(θ) = 1, dividing through by cos2(θ), to get 2(1+tan2(θ))dθ/dx=5. From earlier, we know that tan(θ) = 5x/2, so substituting gives 2(1+25x2/4) dθ/dx= 5 dθ/dx = 5/(2+25x2/2)

CW
Answered by Callum W. Maths tutor

4176 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What's the proof for the quadratic formula?


What is the difference between quotient rule, product rule and chain rule, and when to use them in differentiation?


Find the equation of the straight line perpendicular to 3x+5y+6=0 that passes through (3,4)


Find the first and second derivatives of: y = 6 - 3x -4x^-3, and find the x coordinates of the line's turning points


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning