theta = arctan(5x/2). Using implicit differentiation, find d theta/dx.

First, we must rearrange to give 2tan(θ) = 5x. Differentiate both sides with respect to x: 2sec2(θ)dθ/dx = 5 Use identity sin2(θ) + cos2(θ) = 1, dividing through by cos2(θ), to get 2(1+tan2(θ))dθ/dx=5. From earlier, we know that tan(θ) = 5x/2, so substituting gives 2(1+25x2/4) dθ/dx= 5 dθ/dx = 5/(2+25x2/2)

CW
Answered by Callum W. Maths tutor

4390 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate [ x.ln(x)] with respect to x


Solve the inequality 4x^2​>5x-1


Using the limit definition of the derivative, find the derivative of f(x)=sin(3x) at x=2π


give the coordinates of the stationary points of the curve y = x^4 - 4x^3 + 27 and state with reason if they are minumum, maximum, or points of inflection.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning