Given that y=(4x+1)^3sin 2x , find dy/dx .

So this function is the product of two functions of x, so we use the product rule to differentiate it. The rule states if y=uv, dy/dx=(du/dx)v+(dv/dx)u. In this function we assign u=(4x+1)3 and v=sin2x. When we differentiate u we need to use the chain rule, as there is a function within a function, which gives us (3(4x+1)2)x4 which is equal to 12(4x+1)2. When we differentiate v we get 2cos2x, again using chain rule. So we plug these values into the formula which gives us dy/dx=12(4x+1)2Sin2x + 2(4x+1)3Cos2x

TF
Answered by Tom F. Maths tutor

6491 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find d/dx (ln(2x^3+x+8))


Express [1+4(square root)7] /[ 5+ 2(square root)7] in the form m + n (square root)7 , where m and n are integers.


Express 5cosx - 3sinx in the form Rcos(x+a).


The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning