Given that y=(4x+1)^3sin 2x , find dy/dx .

So this function is the product of two functions of x, so we use the product rule to differentiate it. The rule states if y=uv, dy/dx=(du/dx)v+(dv/dx)u. In this function we assign u=(4x+1)3 and v=sin2x. When we differentiate u we need to use the chain rule, as there is a function within a function, which gives us (3(4x+1)2)x4 which is equal to 12(4x+1)2. When we differentiate v we get 2cos2x, again using chain rule. So we plug these values into the formula which gives us dy/dx=12(4x+1)2Sin2x + 2(4x+1)3Cos2x

TF
Answered by Tom F. Maths tutor

6701 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to integrate e^(5x) between the limits 0 and 1.


Use integration by parts to find the value of definite integral between 5 and 1 (3x/root(2x-1))dx


How do you integrate (sinx)^2?


How can you express the complex number z = 2 + 3i in the form z = r(cos x + i sinx)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning