Given that y=(4x+1)^3sin 2x , find dy/dx .

So this function is the product of two functions of x, so we use the product rule to differentiate it. The rule states if y=uv, dy/dx=(du/dx)v+(dv/dx)u. In this function we assign u=(4x+1)3 and v=sin2x. When we differentiate u we need to use the chain rule, as there is a function within a function, which gives us (3(4x+1)2)x4 which is equal to 12(4x+1)2. When we differentiate v we get 2cos2x, again using chain rule. So we plug these values into the formula which gives us dy/dx=12(4x+1)2Sin2x + 2(4x+1)3Cos2x

TF
Answered by Tom F. Maths tutor

6883 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve y = 2x^3 -ax^2 +8x+2 passes through the point B where x = 4. Given that B is a stationary point of the curve, find the value of the constant a.


How does integration work?


How can you factorise expressions with power 3 or higher?


Edexcel C3 June 2015 Q1: tan(x)=p, where p is a constant. Using standard trigonometric identities, find the following in terms of p. a) tan(2x). b) cos(x). c) cot(x-45).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning