Differentiate y=(4x - 5)^5 by using the chain rule.

Notation: I use the ^ in the title question to indicated 'to the power of' and I use an asterisk * (or star) to indicate 'multiplied by' in the answer, to avoid confusion with the x term! 

Step 1) let u = 4x - 5      therefore y = u5

Step 2) du/dx = 4           dy/du = 5u4

Step 3) (the chain rule!)  dy/dx = dy/du * du/dx

so dy/dx = 5u4 * 4

     dy/dx = 20u4 

     dy/dx = 20(4x - 5)4 as we substitute for the u term to complete our answer! 

JE
Answered by Joseph E. Maths tutor

13066 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x = 2t and y = 4t^2 + t. Find the gradient of the curve when t = 4


Express 3(x^2) - 12x + 5 in the form a(x - b)^2 - c.


Solve the equation tanx/cosx = 1 for 0°<x<360°


The curve C has equation x^2 – 3xy – 4y^2 + 64 = 0; find dy/dx in terms of x and y, and thus find the coordinates of the points on C where dy/dx = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning