Integrating cos^2(x)+5sin^2(x)

Firstly, note that cos^2(x)+5sin^2(x)= cos^2(x) +sin^2(x) +4sin^2(x).

By trignoemtric identies, cos^2(x)+sin^2(x)=1 and so we can just integrate 1+4sin^2(x) since this is equal to cos^2(x)+5sin^2(x).

Again, by trignometric identities, 4sin^2(x)=4(1/2-1/2 cos(2x))=2-2cos(2x),

and so 1+4sin^2(x)=3-2cos(2x).

We can now integrate this much more easily...

3 integrates to 3x and -2cos(2x) integrates to -sin(2x).

Hence the integral, remembering the constant of integration, is...

3x -sin(2x) +c

RL
Answered by Rafe L. Maths tutor

8134 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate 6x^2


Given that y > 0, find ∫((3y - 4)/y(3y + 2)) dy (taken from the Edexcel C4 2016 paper)


Find the all the angles of a triangle with side lengths of 8cm, 11cm and 11cm.


Find dy/dx for (x^2)(y^3) + ln(x^y) = 5sin(6x)/x^(1/2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning