The curve C has equation: 2(x^2)y + 2x + 4y – cos(pi*y) = 17. Use implicit differentiation to find dy/dx in terms of x and y.

The first step is to differentiate both sides of this equation with respect to x - we will then be able to solve for dy/dx. Differentiating the right side of the equation gives d/dx(17)=0. We’ll differentiate the left side term by term. Term 1: d/dx(2x2y). We use the product rule to give yd/dx(2x2)+2x2(dy/dx)=4xy+2x2(dy/dx). Term 2: d/dx(2x)=2. Term 3: d/dx(4y). We use the chain rule, du/dx=(du/dy)(dy/dx), with u=4y. This gives d/dx(4y)=d/dy(4y)dy/dx=4(dy/dx). Term 3: d/dx(-cos(piy)). We use the chain rule, with u=-cos(piy). This gives d/dx(-cos(piy))=d/dy(-cos(piy))(dy/dx). To find d/dy(-cos(piy)), we use the chain rule once more, with u=piy, to give d/dy(-cos(u))=d/du(-cos(u))(du/dy)=pisin(u)=pisin(piy). Therefore, d/dx(-cos(piy))=pisin(piy)(dy/dx). The differential of cos is a standard result that should be remembered - it is not expected for it to be derived in this question. Now we have differentiated all the terms and the resultant expression is: 4xy+2x2(dy/dx)+2+4(dy/dx)+pisin(piy)(dy/dx)=0. Finally, we rearrange this expression to find dy/dx in terms of x and y: dy/dx=(-4xy-2)/(2x2+4+pisin(pi*y)).

PP
Answered by Pramey P. Maths tutor

6948 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle, P, moves along the x-axis. The displacement, x metres, of P is given by 0.5t^2(t^2 - 2t + 1), when is P instantaneously at rest


The curve C has equation y = 3x^4 – 8x^3 – 3 Find (i) dy/dx (ii) the co-ordinates of the stationary point(s)


Explain how integration via substitution works.


What's the proof for the quadratic formula?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences