Find the tangent to y = x^2 - 4x + 9 at the point (3,15)

First find dy/dx:

dy/dx = 4x - 4

And thus at (3,15):

dy/dx = 12 - 4 = 8 = m (as m is the gradient of a curve)

So using y - y1 = m(x - x1) where (x1,y1) = (3,15):

y - 15 = 8(x - 3)

y = 8x- 9

SH
Answered by Scott H. Maths tutor

2888 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do we know the derivative of x^n


Differentiate 6x^2+2x+1 by first principles, showing every step in the process.


(a) Use integration by parts to find ∫ x sin(3x) dx


Prove the identity: (cos θ + sin θ)/(cosθ-sinθ) ≡ sec 2θ + tan 2θ


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences