Find the tangent to y = x^2 - 4x + 9 at the point (3,15)

First find dy/dx:

dy/dx = 4x - 4

And thus at (3,15):

dy/dx = 12 - 4 = 8 = m (as m is the gradient of a curve)

So using y - y1 = m(x - x1) where (x1,y1) = (3,15):

y - 15 = 8(x - 3)

y = 8x- 9

SH
Answered by Scott H. Maths tutor

2974 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A ball is kicked and has an instantaneous velocity of 19.6m/s at an angle of 30 degrees to the horizontal. A target lies flat on the ground in the direction the ball is kicked and lies at a distance of (98/5)*(3^1/2)m. Does the ball land on the target?


(a) Express 9x+11/(2x+3)(x-1) as partial fractions and (b) find the integral of 9x+11/(2x+3)(x-1) with respect to x


Find the gradient of the curve y = x^2(ln(x)) at x = e


Express 2Cos(a) - Sin(a) in the form RCos(a+b) Give the exact value of R and the value of b in degrees to 2 d.p.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences