Find the tangent to y = x^2 - 4x + 9 at the point (3,15)

First find dy/dx:

dy/dx = 4x - 4

And thus at (3,15):

dy/dx = 12 - 4 = 8 = m (as m is the gradient of a curve)

So using y - y1 = m(x - x1) where (x1,y1) = (3,15):

y - 15 = 8(x - 3)

y = 8x- 9

SH
Answered by Scott H. Maths tutor

3027 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = x^3 ln x. Find dy/dx


Derive the quadratic formula. From it, write down the determinant and explain, how is it related to the roots of a quadratic equation.


Using substitution, integrate x(2 + x))^1/2 where u^2 = 2 + x


Why does 'x' need to be in radians to differentiate 'sin x'?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning