Find the value of dy/dx at the point where x = 2 on the curve with equation y = x^ 2 √(5x – 1).

Here we must use the product rule to differeniate because x appears in both terms of the equation, therefore both parts must be differentiated. So we will set u= xand v= (5x-1)^(1/2) written like this makes the power easy to see. du/dx=2x dv/dx=(1/2)(5)(5x-1)^(-1/2) Product rule dy/dx = udv/dx + vdu/dx dy/dx = (5/2)x2(5x-1)^(-1/2) + 2x(5x-1)^(1/2) Sub in the value of 2 dy/dx = (5/2)22(5(2)-1)^(-1/2) + 2(2)(5(2)-1)^(1/2) dy/dx = 46/3 = 20/21/3 + 12 12 can be written as 36/3 so dy/dx= 10/3 + 36/3 = 46/3 

LT
Answered by Lucy T. Maths tutor

12035 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Where does integration by parts come from?


Integrate xsin(x) by parts between the limits of -pi/2 and +pi/2


A curve has the equation: x^4 + 2x -xy - y^3 - 10=0. Find dy/dx in terms of x and y.


What is the integral of ln(x)? Hint: use parts for this integration


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning