Given the function f(x) = (x^2)sin(x), find f'(x).

The function f(x) is a product of 2 functions of x, so when we differentiate it, we need to use the product rule.

The product rule states that for a function f(x) = g(x)*h(x), f'(x) is given by g(x)*h'(x) + h(x)*g'(x).

If we break f(x) up into two parts and let g(x) = x2 and h(x) = sin(x) then we can find g'(x) and h'(x).

We find that g'(x) = 2x and h'(x) = cos(x). Substituting these values into the product rule, we get:

f'(x) = x2cos(x) + 2xsin(x).

JS
Answered by Jason S. Maths tutor

10047 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 10x(x^1/2 - 2)dx


How to sketch a cubic function


How do I differentiate f(x) = cos(x)/x?


A circle has the equation x^2 + y^2 - 4x + 10y - 115 = 0. Express the equation in the form (x - a)^2 + (y - b)^2 = k, and find the centre and radius of the circle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning