Given the function f(x) = (x^2)sin(x), find f'(x).

The function f(x) is a product of 2 functions of x, so when we differentiate it, we need to use the product rule.

The product rule states that for a function f(x) = g(x)*h(x), f'(x) is given by g(x)*h'(x) + h(x)*g'(x).

If we break f(x) up into two parts and let g(x) = x2 and h(x) = sin(x) then we can find g'(x) and h'(x).

We find that g'(x) = 2x and h'(x) = cos(x). Substituting these values into the product rule, we get:

f'(x) = x2cos(x) + 2xsin(x).

JS
Answered by Jason S. Maths tutor

9787 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that A(sin θ + cos θ) + B(cos θ − sin θ) ≡ 4 sin θ, find the values of the constants A and B.


Integrate with respect to x ) dy/dx= 6x^5


The curve C has the equation y = 1/2x^3 - 9x^3/2 + 8/x + 30, find dy/dx. Show that point P(4, -8) lies on C


Find R and a such that 7*cos(x)+3*sin(x)=Rcos(x-a)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning