Binomially expand the equation (2+kx)^-3

(2+kx)-3 = (2-3)(1+kx/2)-3 = (2-3)(1+(-3)(kx/2) + [(-3)(-4)]/2! (kx/2)2 + [(-3)(-4)(-5)]/3! (kx/2)3 +... )
= 1⁄8 [1 -(3kx/2) + (12⁄2 k2x2/4) + (60⁄6 k3x3/8) + ...]
= 1⁄8 [1 - (3⁄2 kx) + ( 3⁄2 k2x2) + (5⁄4 k3x3) + ...]
= 1⁄8 - 3⁄16 kx + 3⁄16 k2x2 + 5⁄32 k3x3

CH
Answered by Christopher H. Maths tutor

8625 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The lines y = 3x² - x + 5/2 intersects the line y = x/2 +7 at two points. Give their coordinates. Show your working


how to turn a fraction in the form of (x + a)/(x + b)^2 into partial fractions?


The equation: x^3 - 12x + 6 has two turning points. Use calculus to find the positions and natures of these turning points.


a) Simplify 2ln(2x+1) - 10 = 0 b) Simplify 3^(x)*e^(4x) = e^(7)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences