How do I differentiate a function of x and y with respect to x?

To differentiate a function of x and y, you must differentiate x as you would ordinarily, and then differentiate y as you would normally, but multiply the differentiated term by dy/dx. For terms with x and y in them, you must apply the product rule. Once each term has been differentiated, collect all the terms with dy/dx as a multiplier on one side of the equation and all the other terms on the other. Then, factorise the dy/dx side, and divide by what's in the brackets to get dy/dx on its own. You will then have the solution. This is called implicit differentiation.

HM
Answered by Hannah M. Maths tutor

23411 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I solve equations like 3sin^2(x) - 2cos(x) = 2


Find the equation of the tangent to the curve y = 3x^2 + 4 at x = 2 in the form y = mx + c


solve the equation 2cos x=3tan x, for 0°<x<360°


How do I check if events are independent (in statistics / probability)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences