How do I differentiate a function of x and y with respect to x?

To differentiate a function of x and y, you must differentiate x as you would ordinarily, and then differentiate y as you would normally, but multiply the differentiated term by dy/dx. For terms with x and y in them, you must apply the product rule. Once each term has been differentiated, collect all the terms with dy/dx as a multiplier on one side of the equation and all the other terms on the other. Then, factorise the dy/dx side, and divide by what's in the brackets to get dy/dx on its own. You will then have the solution. This is called implicit differentiation.

HM
Answered by Hannah M. Maths tutor

28653 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why do we have to add the +c when integrating a function


Given y = 2sin(θ) and x = 3cos(θ) find dy/dx.


A circle, C, has an equation: x^2 + y^2 - 4x + 10y = 7 . Find the centre of the circle and its radius?


solve the simultaneous equation; x^2+y^2=10 2x+y=5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning