Solve the equation: log5 (4x+3)−log5 (x−1)=2.

As both terms on the left hand side have base 5 we know we can combine them. When dealing with logs, a minus means we can divide them, and a plus means we can multiply them. This will leave us with log5(4x+3/x-1)=2. Next we can get rid of the log, we do this by taking 5 squared as this is what the log means. This leaves us with 4x+3/x-1=5^2=25. We can now solve this to find x. 4x+3=25(x-1), expand the brackets: 4x+3=25x-25. Taking all x to one side and constants to the other leaves us with 28=21x. Therefore x=4/3

HG
Answered by Hugh G. Maths tutor

9079 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.


Use chain rule and implicit differentiation to find dy/dx for y^3 = 1 + 3*x^2, then show that they are equal


Simplify √32 + √18 giving your answer in the form of a√2.


How many lines of method should I write in order to get all of the marks?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning