Solve the equation: log5 (4x+3)−log5 (x−1)=2.

As both terms on the left hand side have base 5 we know we can combine them. When dealing with logs, a minus means we can divide them, and a plus means we can multiply them. This will leave us with log5(4x+3/x-1)=2. Next we can get rid of the log, we do this by taking 5 squared as this is what the log means. This leaves us with 4x+3/x-1=5^2=25. We can now solve this to find x. 4x+3=25(x-1), expand the brackets: 4x+3=25x-25. Taking all x to one side and constants to the other leaves us with 28=21x. Therefore x=4/3

HG
Answered by Hugh G. Maths tutor

9200 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write the complex number Z=1/2+sqrt(3)/2j both as a function involving cos & sin, and as a function involving an exponential.


How do I calculate the eigenvalues and eigenvectors of a 2x2 matrix, and what is the point of doing this calculation?


Integrate the function (3x+4)^2 using methods of expansion and substitution


When do we use the quadratic formula, and when the completing the square method?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning