Find, using calculus, the x coordinate of the turning point of the curve with equation y=e^3x cos 4

1st step: find the derivative dy/dx of the given equation2nd step: now equate the obtained derivative to 0 because this is precisely the situation in which the graph changes direction (the derivative dy/dx equated to 0 means that the gradient m at that point equals 0. which if you think of logically makes sense to be the gradient at which the direction of the graph changes)3rd step: now just find the value of x from the obtained equation. The value of x you find corresponds to the x-cordinate of the turning point

UW
Answered by Urszula W. Maths tutor

4179 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By first proving that sin2θ=2sinθcosθ, calculate ∫1+sinθcosθ dθ.


Integrate (x+3)/(x(x-3)) with respect to x


Simple binomial: (1+0.5x)^4


Let f(x) = 2x^3 + x^2 - 5x + c. Given that f(1) = 0 find the values of c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning