Find, using calculus, the x coordinate of the turning point of the curve with equation y=e^3x cos 4

1st step: find the derivative dy/dx of the given equation2nd step: now equate the obtained derivative to 0 because this is precisely the situation in which the graph changes direction (the derivative dy/dx equated to 0 means that the gradient m at that point equals 0. which if you think of logically makes sense to be the gradient at which the direction of the graph changes)3rd step: now just find the value of x from the obtained equation. The value of x you find corresponds to the x-cordinate of the turning point

UW
Answered by Urszula W. Maths tutor

4032 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A stone, of mass m , falls vertically downwards under gravity through still water. The initial speed of the stone is u . Find an expression for v at time t .


OCR M2 A level maths June 2015 question 8


Determine the integral: ∫x^(3/4)dx


How do you find the integral of (2+5x)e^3x ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning